
Bug or artistic feature?
Scaling assessment and feedback of creative

student-authored graphics programs

Miranda Li * Cameron Mohne *

Chris Piech +

Abstract
We experiment with machine learning methods
for automatically assessing the complexity and
creativity of CS1 graphics assignments. We aim
to build a tool which can be quickly deployed by
educators to provide feedback on student graph-
ics assignments at scale. We have tried framing
the prediction of the complexity of a graphics as-
signment output as a supervised few-shot learning
problem as well as performing an unsupervised
outlier detection approach to try to pick out cre-
ative outputs from the set of all student images.

We also hope to begin a discussion of how we
might define and measure creativity in an educa-
tional context.

1. Introduction
With this direction in mind we also hope to open discussion
on an important sub-question: how can we distinguish inten-
tionally creative student output from mistakes? To the best
of our knowledge this question has yet to be formally posed.
We hypothesize that highly intentionally creative (artistic)
outputs are some combination of novel and complex. Thus
as a first step towards creating a generalizable auto-grader
we focus on attempting to measure and predict the visual
complexity of an output from the student’s generated image.

2. Related Work
Auto-Grading Graphics Assignments: Notably, the task
of auto-grading graphical assignments within the CS sphere
has been explored before (Yan et al., 2019). While revolu-
tionary, the overarching goal of this prior work was close-
ended in nature with open-ended pathways. We instead
explore methods to move beyond this task and assess a truly
open-ended assignment with no ground-truth goal.

Few-Shot Learning: One key constraint to keep in mind
due to scale is the amount of data accessible. Requiring too
much data hinder users (i.e. teachers) (Sung et al., 2018)

when using a generalized model. Few-Shot Learning (FSL)
is one type of model architecture purposed for handling
this issue. In FSL literature, a vital component of the FSL
model’s structure is the number of ways and shots the model
uses to train. An N -way, K-shot FSL architecture has N
unique classes for training with K labeled instances of each
respective class. These examples make up the support set
which is used to sample from and fine-tune the model to
prepare it for various unseen cases from the query set. In
this implementation we hope that with necessary tweaks
the model adequately learns an embedding to classify novel
cases which lie outside of any prior collected data as they
come.

Transfer Learning: Recent FSL models sometimes utilize
transfer learning as a backbone prior to fine-tuning towards
a specific task. This methodology generates a metric em-
bedding which is assumed to aid efficacy in generalization
when given few examples: a conclusion that is in line with
the scope and purpose of transfer learning overall (Medina
et al., 2020).

Meta-Learning: While meta-learning techniques are not
implemented in this paper, they serve as a next step. The
concept of ”learning to learn” can help deepen FSL models
to aid in query set generalization through (a learned) more-
efficient use of the support set (Ren et al., 2018).

Unsupervised Outlier Detection: Another way to con-
sider the posed problem is to ponder the average case of
student flags. We then make an assumption that creativity
and/or complexity results in an outlier with respect to other
data points. In this assumption, we hope to learn latent fea-
tures for what defines creativity or complexity across many
examples if we correctly learn high-level semantic features
(Cheng et al., 2021).

3. Dataset and Features
The flag assignment is a problem students are given for
open-ended exploration of graphics during Code in Place
(cip, 2023), a 6-week human-centered MOOC which had
9k students from its most recent iteration which our data is

Scaling assessment and feedback of creative student-authored graphics programs

from. Our data is student work representing code written
with the intention and purpose of generating a flag. There
were no hard requirements on what region the flag should
represent. We obtained the student code and corresponding
images from the Code in Place database. We have 5081
images each with corresponding code. Each example is
denoted by a student’s unique identifier. We labelled all
5081 images with which country’s flag, if any, seemed to be
emulated. We labelled 1316 images with a value from 0 -
10 based on how complex the image appeared to be.

In some of our experiments we turned our complexity labels
into coarser bins ”low”, ”medium”, and ”high”. We did this
binning in two different ways – the first which we will refer
to as the ”low 02” scheme was binned as follows:

• Labels 0, 1, and 2 were assigned to the bin ”low 02”.

• Labels 3, 4, 5, 6 were assigned to the bin ”medium 36”.

• Labels 7, 8, 9, 10 were assigned to the bin ”high 7”.

And the ”low 13” scheme was binned as follows:

• Labels 1, 2, and 3 were assigned to the bin ”low 13”.
Note that here we exclude all images with label 0,
which are all blank.

• Labels 4, 5, 6 were assigned to the bin ”medium 46”.

• Labels 7, 8, 9, 10 were assigned to the bin ”high 7”.

Figure 1. Data retrieval pipeline. From top to bottom we have: the
student code, the corresponding flag, the labelled data entry.

4. Methods
4.1. HDBScan

As a baseline we implemented unsupervised clustering over
the flag images to see if simple algorithms could recognize
any meaningful structure to the data (ideally clustering flags
of the same country or similar complexity near to each
other); we examined the cluster outputs by hand. For this
we used HDBScan (Malzer & Baum, 2019), a hierarchical
clustering algorithm which attempts to infer the number
of clusters by pruning a tree of generated clusters until all
remaining clusters are stable. We preferred this method
because most other methods require an a priori specification
of how many clusters are in the data, which in this case we
did not know — though there are 193 national flags in the
world, not all of them were represented in the dataset, and
some students created flags which were not national flags
(intentionally or not).

4.2. K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a nonparametric supervised
learning algorithm which is a common baseline in super-

Scaling assessment and feedback of creative student-authored graphics programs

vised computer vision tasks. We used KNN for both classi-
fication and regression on complexity values as a baseline.

When a prediction is to be made for an unseen sample,
KNN examines the k closest points in the dataset to that
point and returns the most common label (in the case of
classification) or the average label (in the case of regression)
as the prediction on that sample. k is a parameter which we
specify.

4.3. Prototypical Networks

We utilized a Prototypical Network (ProtoNet) model, a
few-shot learning approach, as one of our methodologies.
We went with this approach because we ultimately hope
to build a tool which can be easily applied by educators
to their graphics assignments with minimal overhead (e.g.
easier than requiring them to label a large dataset and train
their own model). ProtoNet intends to learn a metric space
in which classification can be performed by performing a
distance computation from prototype representations of the
various classes (Snell et al., 2017).

Our implementation closely follows (Snell et al., 2017)
where we take a support set S ∈ RN×D and train our
model by building prototypes using Sk — the subset of
the N D-dimensional examples having class k. The pro-
totypes, ck, are then built on the binned complexities by
taking an embedding function with learnable parameters
ϕ, fϕ : RD → RM , and finding the mean vector of the
respective classes:

ck =
1

|Sk|
∑

(xi),(yi)∈Sk

fϕ(xi)

This result is then used alongside a distance function d to
create a distribution over the classes based on the softmax
over distance to each prototype in the embedding space:

pϕ(y = k|x) = exp(−d(fϕ(x), ck))∑
k′ exp(−d(fϕ(x), ck′))

We take this distribution and minimize its negative log-
probability as our cost function

J(ϕ) = − log pϕ(y = k|x)

with regard to the true classes k via SGD.

4.4. Outlier Detection

Converse to the other non-baseline methodologies, Outlier
Detection is a completely unsupervised learning algorithm.
The specific architecture we used was that of a single-stack
autoencoder resembling the model of (Wan et al., 2019).
The overarching pipeline of this model takes ground truth
images and proceeds to reconstruct the image via an encoder

y = a(Wx+ b)

(where a is an activation function); and a decoder

z = a(W ′y + b′)

In this case, y is an encoded representation of x, and z is
a reconstructed version of x. Notably, (Wan et al., 2019)’s
architecture uses the sigmoid activation function for both
the encoder and decoder activation functions. Ours instead
uses the ReLU activation function for all of the encoding
layers and most of the decoding layers. We retain the sig-
moid only in the last step of reconstruction. This choice was
informed by: gradients being less likely to vanish for deeper
encodings, overall quicker convergence (Krizhevsky et al.,
2012), and hopes to learn more distinct and disentangled
latent features through sparsity. Thus, we reserve usage of
the sigmoid only for the purposes of a smoother output in
the reconstruction process. We then ultimately take this re-
construction and use it to optimize reconstruction error. We
do this by training and updating perceived reconstructions
using the MSE a reconstruction has from its ground truth as
our loss function.

This process is depicted in Figure 2.

Figure 2. Process of reconstruction and the corresponding training
goal

With this approach, the outlier detector learns how to extract
features from our data which would lead to the ability to
classify outliers through the severity of difference an image
has in regard to the perceived reconstruction in the mind
of the model. In doing so, this also provides interpretable
results as to where and what is causing outlier classification.
This explainability will be fundamental when we discuss
creativity else it will be impossible to deduce how novelty
was perceived in the scope of our classification process.

Scaling assessment and feedback of creative student-authored graphics programs

5. Experiments/Results/Discussion
5.1. Baseline results

5.1.1. HDBSCAN

We ran a few different configurations of HDBScan, all of
which produced very unsatisfying results upon visual exam-
ination. We tried running HDBScan with:

• a minimum cluster size of 5 on the embeddings (length
1000) directly

• a minimum cluster size of 5 on the embeddings after
reducing their dimension to 50 using PCA — we chose
50 because it seems to explain a reasonable amount
of the variance (from a cumulative explained variance
plot) while being a significantly smaller number of
dimensions than the full embedding

5.1.2. KNN

We ran KNN with varying values of k. We treated our
complexity labels as a classification as well as a regression
task.

On classification (treating the complexity scores 0 - 10 as
eleven different bins) we were able to achieve a maximum
accuracy of 37.08% with k = 32 after trying KNN with all
values of k from 1 to 40.

On regression (treating the complexity score as continuous)
we were able to achieve a minimum MSE of 3.45 with
k = 35 after trying KNN with all values of k from 1 to 40.

Under the ”low 02” scheme we achieved 69.00% accu-
racy (notably on the coarser bins ”low 02”, ”med 36” and
”high 7”) with k = 7 after trying KNN with all values of k
from 1 to 40.

5.2. ProtoNet results

Before running ProtoNet we binned our complexity values
into ”low”, ”medium” and ”high” bins since some of our
classes 0-10 had extremely few examples. To understand the
effect that binning into these more coarse labels would have,
we attempted ProtoNet twice; we will describe below how
we performed the binning and what the results were. Note
that ProtoNet is a classification algorithm, but since we are
ultimately hoping to treat complexity as continuous, we also
report mean squared error (which we calculate by assuming
classification to a certain bin represents a prediction of the
average complexity value of that bin) with regard to the 0-10
complexity labels in addition to accuracy with regard to the
bins.

We ran ProtoNet with the following parameters:

• 2 classes per task (N WAY)

• 5 images per class in the support set (N SHOT)

• 10 images per class in the query set (N QUERY)

Under the ”low 02” scheme our evaluation of 100 tasks
achieved 73.05% accuracy and MSE of 8.60 without fine-
tuning ProtoNet, and 73.45% accuracy and MSE of 8.05
after finetuning ProtoNet for 40k iterations. The confusion
matrix of the finetuned model is presented in Figure 3.

Figure 3. Confusion matrices for ProtoNet with labels ”low 02”,
”medium 36”, ”high 7”

We make two observations: first, that finetuning ProtoNet
doesn’t seem to really improve the accuracy, and second,
ProtoNet does not do much better than our KNN baseline
on the same dataset which has an accuracy of 68.9%. It
remains to be investigated why finetuning ProtoNet does
not seem to improve the accuracy.

Under the ”low 13” scheme our evaluation of 100 tasks
achieved 72.25% accuracy and MSE of 6.40 without fine-
tuning ProtoNet, and 68.85% accuracy and MSE of 6.61
after finetuning ProtoNet for 40k iterations. The confusion
matrix of the finetuned model is presented in Figure 4.

Figure 4. Confusion matrices for ProtoNet with labels ”low 13”,
”medium 46”, ”high 7”

Similarly we observe here that finetuning does not have a
positive effect, and that we once again do not improve from

Scaling assessment and feedback of creative student-authored graphics programs

the baseline We also note that since our results seem to differ
between our two binning strategies, the choice of bins has
an important effect on the efficacy of the final model.

Across both experiments we observe from the confusion
matrix that the low bin is always the easiest to correctly
classify, and the highest is always the most difficult. Also,
the prediction seems to more frequently be a lower bin than
the true label, since the lower left portion of the matrices
(under the diagonal) seem to be generally more likely than
the upper right. We hypothesize that this could be due to
class imbalance, where since we have a disproportionately
large number of samples in the lowest bins the model is able
to learn a better representation of those samples, but further
exploration is required.

5.3. Outlier detection results

After training and testing the model on the same dataset as
other implementations, we found that the model had a fair
interpretation of visual complexity; but poor discernment
of countries versus edge cases overall. This is best seen in
outlier classification with varying selections of thresholds.

Figure 5. Example threshold graph with threshold = 0.01

As we can see in Figure 5, the bound for the threshold dic-
tates which instance scores (how much an image deviates
from the dataset) are considered abnormal. This directly im-
pacts the sets of perceived novelty and mundanity and which
images can thus be deemed complex or simple respectively.
The performance derived from these different thresholds
provide valuable insight into what the model finds novel
upon reconstruction. Please note that novelty in this context
refers to the metric of belief that a given case is an outlier
within the dataset. Novelty is related to image complexity
as we will find, but they are not equivalents.

To validate the first point—that the model has a fair inter-
pretation of visual complexity—we investigate Figure 6.

Figure 6. Threshold impact on mean complexity of the outlier and
inlier image sets

From Figure 6 it is visually apparent that as we increase the
threshold for novelty, complexity in both sets indeed rise.
This is expected as we naturally assume novel cases to be
more complex on average. Increasingly difficult restrictions
on novelty would thus lead us to assume that the average
complexity will increase given our prior assumption—which
holds true. However, the new influx of previously novel
cases (for a prior threshold) means that the set of inliers
now absorbs cases generally above the mean complexity of
what it was previously; thereby increasing it. Overall, we
find this result to conclude that visual complexity is a valid
derivative in regards to outliers. This isn’t without faults,
though.

Figure 7. Threshold impact on the proportion of edge cases in
outlier and inlier image sets

Scaling assessment and feedback of creative student-authored graphics programs

We see in Figure 7 that outside of when the threshold is set to
0.01, novelty thresholds have little impact on the proportion
of edge cases in outlier/inlier sets of images. This is vital
knowledge given that edge cases are cases where a country
is not classified; a result implying that we fail to capture
a true classification on the countries’ flags. It is entirely
possible for this to be due to the type of outliers present in
the dataset—an explanation hypothesized prior in the paper
for the ProtoNet methodology. Overall, more research needs
to be done.

Adjacently, verification was done to ensure that this model is
indeed trying to perceive and classify novelty. To do this, we
investigated random samples of both outlier and inlier sets of
data for each given threshold. We compared the ground truth
flags to heat maps of what the model perceives as novelty—
that is, parts of the image which diverges significantly from
the reconstruction the model was expecting. Overall, we
find that as the threshold increases, there is higher semantic
meaning within the heat maps. See appendix for these
findings.

Lastly are two key weaknesses in this model as well as why
we decided to include it. Namely, this implementation in
its current state fails to adhere to scalability and ease of
generalizability.

This is counteracted, though, by the belief that this work
may instead spark new conversation regarding interpreta-
tions in defining a metric for creativity within open-ended
assignments. It also has potential to serve as a baseline
consideration for adequate assessment moving forward.

6. Conclusion / future work
This work represents a first step towards creating a general-
izable auto-grader for open-ended, creative assignments at
scale.

We revisit our hypothesis that intentional creativity is cap-
tured by both novelty and complexity of an output.

From unsupervised outlier detection we found that com-
plexity could be captured well (with the caveat that this is
certainly affected by the fact that the majority of our dataset
were images of low complexity – it remains to be seen if
this trend is as clear for datasets where the images are more
similar in complexity or higher in complexity overall), but
the difference between a mistake and an intentional choice
was not captured particularly well from our qualitative ob-
servations of the results.

We also tried few-shot learning on our hand-labeled com-
plexity labels to see if we could create a system which is
more easily deployable (i.e. requires less data labelling and
less training time), but unfortunately we were not able to
do much better than the baseline KNN approach. We will

continue to investigate how we might improve our methods.

We will continue to work on this and try a few-shot regres-
sion model instead of a few-shot classification model. We
are also investigating implementations of meta-learning.

Simultaneously, we are looking into how, philosophically,
creativity should be not only be defined, but also measured.
We hope to explore a rich qualitative discussion about what
constitutes a high-quality creative student assignment as we
move forward with this work.

Contributions
Miranda Li (mirandal@stanford.edu)

Responsible for retrieval of raw data (code); half of labelled
images; implementations of HDBScan, KNN, and ProtoNet
FSL models.

Responsible for half of the write-up including: majority
of introduction; majority of dataset and features; parts of
methodology; HBDScan, KNN, and ProtoNet results; con-
clusion.

Cameron Mohne (mohnec1@stanford.edu)

Responsible for: code-to-image pipeline; image labelling
software; half of labelled images; implementation of outlier
detection and an omitted alternative FSL architecture.

Responsible for half of the write-up including: formatting;
parts of introduction; related work; parts of dataset and
features; parts of methodology; outlier detection results.

Chris Piech (cpiech@stanford.edu)

Provided the following: project ideas; means of access to the
raw data (code) used; project direction; revision suggestions;
and unwavering morale boost.

Appendix

A. Outlier Detection
The next two pages are dedicated towards outlier detec-
tion. In these two pages, we have the 4 thresholds,
[0.01, 0.05, 0.1, 0.25], organized into columns.

The top graph in the column showcases the threshold in
relation to instance level scores.

The middle graph in the column showcases the mapping
from the inlier images to the corresponding heat map for the
given threshold.

The bottom graph in the column showcases the mapping
from the outlier images to the corresponding heat map for
the given threshold.

Scaling assessment and feedback of creative student-authored graphics programs

Figure 8. Threshold graph with threshold = 0.01

Figure 9. Mapping of inlier samples to their heat maps when thresh-
old = 0.01

Figure 10. Mapping of outlier samples to their heat maps when
threshold = 0.01

Figure 11. Threshold graph with threshold = 0.05

Figure 12. Mapping of inlier samples to their heat maps when
threshold = 0.05

Figure 13. Mapping of outlier samples to their heat maps when
threshold = 0.05

Scaling assessment and feedback of creative student-authored graphics programs

Figure 14. Threshold graph with threshold = 0.1

Figure 15. Mapping of inlier samples to their heat maps when
threshold = 0.1

Figure 16. Mapping of outlier samples to their heat maps when
threshold = 0.1

Figure 17. Threshold graph with threshold = 0.25

Figure 18. Mapping of inlier samples to their heat maps when
threshold = 0.25

Figure 19. Mapping of outlier samples to their heat maps when
threshold = 0.25

Scaling assessment and feedback of creative student-authored graphics programs

References
Code In Place, December 2023. URL https://
codeinplace.stanford.edu. [Online; accessed
6. Dec. 2023].

Cheng, Z., Zhu, E., Wang, S., Zhang, P., and Li, W. Un-
supervised outlier detection via transformation invariant
autoencoder. IEEE Access, 9:43991–44002, 2021.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25,
2012.

Malzer, C. and Baum, M. A hybrid approach to
hierarchical density-based cluster selection. CoRR,
abs/1911.02282, 2019. URL http://arxiv.org/
abs/1911.02282.

Medina, C., Devos, A., and Grossglauser, M. Self-
supervised prototypical transfer learning for few-shot
classification. arXiv preprint arXiv:2006.11325, 2020.

Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky,
K., Tenenbaum, J. B., Larochelle, H., and Zemel, R. S.
Meta-learning for semi-supervised few-shot classification.
arXiv preprint arXiv:1803.00676, 2018.

Snell, J., Swersky, K., and Zemel, R. S. Pro-
totypical networks for few-shot learning. CoRR,
abs/1703.05175, 2017. URL http://arxiv.org/
abs/1703.05175.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and
Hospedales, T. M. Learning to compare: Relation net-
work for few-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

Wan, F., Guo, G., Zhang, C., Guo, Q., and Liu, J. Outlier
detection for monitoring data using stacked autoencoder.
IEEE Access, 7:173827–173837, 2019. doi: 10.1109/
ACCESS.2019.2956494.

Yan, L., McKeown, N., and Piech, C. The pyramidsnapshot
challenge: Understanding student process from visual
output of programs. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education,
pp. 119–125, 2019.

https://codeinplace.stanford.edu
https://codeinplace.stanford.edu
http://arxiv.org/abs/1911.02282
http://arxiv.org/abs/1911.02282
http://arxiv.org/abs/1703.05175
http://arxiv.org/abs/1703.05175

